Close Thu: $\quad 10.1 / 13.1$ Close next Tue: 10.2/13.2, 10.3
Close next Thu: 13.3 (finish much sooner) Midterm 1, Thursday, Apr. $20^{\text {th }}$
Covers 12.1-12.5, 10.1-10.3, 13.1-13.3

10.1/13.1,10.2/13.2: 3D Curves

Parametric equations:

$$
x=x(t), y=y(t), z=z(t)
$$

Vector form:

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)\rangle
$$

Eliminating the parameter

To get the surface/path over which the motion is occurring:
(a) Solving for t, substitute.
(b) Use $(\sin (u))^{2}+(\cos (u))^{2}=1$.

Entry Task:
Eliminate the parameters:

1. $x=t, y=2-t^{2}$
2. $x=3 \cos (4 t), y=4 \sin (4 t)$
3. $x=t, y=\cos (2 t), z=\sin (2 t)$
4. $x=t \cos (t), y=t \sin (t), z=t$

All pts given by the equations:

$$
x=t, y=\cos (2 t), z=\sin (2 t)
$$

are on the cylinder: $y^{2}+z^{2}=1$.

All pts given by the equations:

$$
x=t \cos (t), y=t \sin (t), z=t
$$

are on the cone: $z^{2}=x^{2}+y^{2}$.

Intersection issues

For all intersection questions, combine/substitute the conditions!
(a) Intersecting a curve and surface. Combine conditions!

Example:
Find all intersections of

$$
x=t, y=\cos (\pi t), z=\sin (\pi t)
$$

with the surface

$$
x^{2}-y^{2}-z^{2}=-3
$$

(b) Intersecting two curve.

Use two different parameters!!!
Combine conditions!
We say the objects collide if the
intersection happens at the same parameter value (i.e. same time).

Example:
Two particles are moving according to

$$
\begin{aligned}
& \boldsymbol{r}_{1}(t)=\langle t, 5 t, 9\rangle, \text { and } \\
& \boldsymbol{r}_{2}(t)=\left\langle t-2,5, t^{2}\right\rangle .
\end{aligned}
$$

Do their paths intersect?
Do they collide?
(c) Intersecting two surfaces.

Combine conditions!
Answer will be a 3D curve.
i) Let one variable be t
ii) Solve for others in terms of t.
(or if $x^{2}+y^{2}=1$, use
$x=\cos (t), y=\sin (t))$

Example:

Find any parametric equations that describe the curve of intersection of

$$
z^{2}=x^{2}+y^{2} \text { and } z=2 y
$$

Find any parametric equations that describe the curve of intersection of $1=x^{2}+y^{2}$ and $z=5-x$.

Calculus on curves
Review: Going from parametric to
Example: Consider $\boldsymbol{r}(t)=\left\langle t, 2-t^{2}\right\rangle$ slope and concavity in 2D:

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(f^{\prime}(x)\right)}{d x / d t}
$$

Example: Consider

$$
x=t, y=2-t^{2}
$$

Vector Calculus

If $\overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)\rangle$, define

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=
$$

$$
\lim _{h \rightarrow 0}\left|\frac{x(t+h)-x(t)}{h}, \frac{y(t+h)-y(t)}{h}, \frac{z(t+h)-z(t)}{h}\right|
$$

$$
\text { so } \quad \overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle
$$

We also define

$$
\begin{gathered}
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t), z^{\prime \prime}(t)\right\rangle . \\
\int \overrightarrow{\boldsymbol{r}}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int z(t) d t\right\rangle
\end{gathered}
$$

Morale, do calculus component-wise.

In 13.3, $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ gives curvature info. In 13.4, $\overrightarrow{\boldsymbol{r}}^{\prime}(t)$ is velocity, $\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|$ is speed, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ is acceleration.

Consider $\overrightarrow{\boldsymbol{r}}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$.
(a) Find $\overrightarrow{\boldsymbol{r}}^{\prime}(t),\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|$, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$.
(b) Find $\overrightarrow{\boldsymbol{r}}(\pi / 4)$ and $\overrightarrow{\boldsymbol{r}}^{\prime}(\pi / 4)$.
(c) Give the equation for the
tangent line at $t=\pi / 4$

Arc Length

The length of a curve
from $t=a$ to $t=b$ is given by
$\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t$

$$
=\int_{a}^{b}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t
$$

(Note: 2D is same without the $z^{\prime}(t)$). We call this arc length.

The arc length from 0 to u is often written as

$$
s(u)=\int_{0}^{u}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t
$$

We call this the arc length function.

